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Abstract

Vulnerability is a critical factor in evaluating the topology of a network. A comprehensive un-
derstanding of these vulnerabilities is vital for enhancing the efficiency of network operations.
In essence, an increase in a network’s vulnerability correlates with a decrease in its security. The
significance of the wrapped butterfly graph, derived from the family of cayley graphs, is evi-
dent in its strong symmetry and regularity, making it a highly efficient network with various
attributes. This study not only focuses on a theoretical framework for detecting vulnerabilities,
but also offers algorithms that tackle these vulnerabilities, centered on the wrapped butterfly
graph as a model for interconnection networks. We conduct simulation experiments to assess
the performance of these algorithms, exploring different types of vertex vulnerabilities and ana-
lyzing the overall robustness of interconnection networks. Identifying vulnerability parameters
has been established as NP–complete across numerous graph categories. In this paper, we iden-
tify several vertex vulnerability parameters, including integrity, toughness, scattering number,
tenacity, and rupture degree, related to the wrapped butterfly graph in polynomial time.
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1 Introduction and Background

Interconnection networks play a vital role in awide array of applications in contemporary soci-
ety. As reliance on interconnected systems grows acrossmultiple domains, including power grids,
transportation, and telecommunications, it becomes essential to scrutinize the vulnerabilities in-
herent in these intricate infrastructures. It has been observed that the interconnected characteris-
tics of these systems can facilitate the rapid spread of failures, affecting extensive geographic areas
[31].

Recent investigations have revealed that a particular scheme, proposed as part of established
security standards, fell short of its intended purpose, failing to withstand sophisticated attacks.
This vulnerability has exposed critical security flaws, underscoring the need for future research to
address these concerns, particularly in the design of a new authenticated key agreement protocol
[55]. Understanding a network’s vulnerabilities is essential to assessing its security and resilience
against potential threats. Examining weaknesses in RSA keys, in particular, helps uncover risks
in encryption, authentication, and secure communication. Strengthening RSA key generation and
management plays a key role in safeguarding networks from potential attacks [47]. In the context
of graph theory to confront these challenges, researchers have introduced various vulnerability
parameters to evaluate the resilience and robustness of interconnection networks. The vulnerabil-
ity of these networks is primarily assessed through several critical parameters, including integrity,
tenacity, toughness, scattering number, and rupture degree. The assessment of these parameters
is crucial for understanding the network’s ability to withstand failures, attacks and for the design
of networks that ensure operational continuity even during disruptive events.

Graph theory provides a framework for examining the topological structure of interconnec-
tion networks by representing them as graphs [54]. In a communication network, nodes repre-
sent processors, while edges denote the communication channels. A significant disadvantage of
a communication network is that it becomes extremely vulnerable to disruption if the failure of a
few processors results in a large communication gap, and this study in the field of graph theory
gave rise to the concept of integrity, i.e., the destruction caused by removing a few vertices from
the graph, which in turn increases the component of the graph along with the study of the largest
remaining components that are still active.

Integrity was suggested as a substitute metric for analyzing a graph’s vulnerability to disrup-
tions brought on by the removal of vertices [8]. The principle behind this was that integrity en-
compasses not just the removal of vertices, but also the consequences that follow, such as what
happens to the largest connected component when some nodes are damaged or perform poorly.
The concept of toughness introduces another dimension for evaluating graphs, offering a clear
and concise measure of the interconnectivity among various graph components. This parameter
reflects the robustness of the graph’s structure, revealing howwell the individual parts are held to-
gether. A graphwith elevated toughness is indicative of strong connections, whereas a graphwith
diminished toughness may exhibit vulnerabilities in its connectivity [16]. The scattering number,
in particular, is noted for its representation of a trade-off between the effort to damage a network
and the extent of the resulting damage. Specifically, it measures the degree to which a network
can be partitioned into smaller, less connected components when subjected to targeted or random
attacks [58]. Furthermore, it is also related to other vulnerability parameters, namely toughness
and integrity [57]. Another important parameter is tenacity, which is used to measure the vul-
nerability of networks by taking into account both the effort required to compromise a network
and the extent of the damage inflicted [32]. In addition, the rupture degree serves as a signifi-
cant vulnerability parameter, as it quantifies the level of damage needed to result in the complete
breakdown of a network [38].
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The primary technical challenge in the evolution of communication technologies is the for-
mulation of a general interconnection network that supports communication between processors.
Achieving a balance between high-performance and cost-effective wiring is vital for successful
network architecture. Several methodologies can be employed to create an effective interconnec-
tion network, such as utilizing finite automata to model the cross-product of these networks [21],
graph construction models [19], and with one notable approach being the application of cayley
graphs [30]. This technique addresses various performance criteria essential for smooth opera-
tion, including large vertex symmetry, minimal degree, small diameter, high connectivity, simple
routing issues, and the alleviation of congestion problems [54].

Wrapped butterfly graphs represent a wider category within the realm of butterfly graphs,
specifically, they are isomorphic to degree four cayley graphs [53]. Butterfly graphs are known as
one of themost popular interconnection networks due to their enormous applications in fields like
parallel computing [49] and sorting networks [22]. While wrapped butterfly graphs encompass
all the attributes of standard butterfly graphs, they also possess the distinctive feature of large
vertex symmetry. This enhancement may contribute to their emergence as a prominent intercon-
nection network, akin to butterfly networks in the future.

In this paper, we analyze the diverse vertex vulnerabilities associated with wrapped butterfly
networks, organized in the following manner. The next section will review the concept of vertex
vulnerabilities and offer a concise survey of relevant literature, emphasizing the determination of
vertex vulnerability within different graph classes along with some basic definitions which are
used in this study. Section 3 introduces the networks of focus, i.e., wrapped butterfly network and
outlines the mathematical formalities required for our subsequent analysis. Section 4 will assess
the various vertex vulnerabilities, specifically integrity, toughness, scattering number, tenacity,
and rupture degree. Section 5 discusses the analysis of the different results obtained.

2 Vertex Vulnerability: Integrity, Toughness, Scattering Number, Tenacity,
and Rupture Degree

This section contains the fundamental concepts and findings from the literature that we will
be referencing in our evidence along with a concise literature survey.

A graph G = (V,E) comprises a set V of vertices (nodes) and a set E of edges (links). The
following symbols and definitions will be employed consistently throughout the paper: Consider
a simple graph S with a vertex set V and an edge set E. For a subset U ⊆ V, let U, ω(S − U) and
m(S−U) represent a cut set of S, the number of components, and the order of the largest component
of S−U, respectively. A component of a graph is defined as a maximal subgraph in which a path
exists from every node to every other node (i.e., they are mutually reachable) and the number of
maximal subgraphs are defined as the number of components.

If S − U is disconnected or consists of just one vertex, then a set U ⊂ V is termed a cut set of
G. If each edge in S has at least one end in U, then any subset U⊂ V is considered a covering of S.
When there is no subset U’ that covers S with |U’| > |U|, then a covering U defined as the minimal
covering. Let β(S) denote the number of vertices in a minimal covering of S, which is also known
as its covering number. A vertex-independent set is a group of vertices in a graph S that prevents
any two of its vertices from being neighbors and the maximum cardinality of such set is defined
as independent number and denoted as α(S).
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Various parameters have been defined in the literature to quantify the vulnerability of net-
works, which include the following:

The vertex connectivity, denoted as κ(S) is defined as the minimum cardinality among all cut
sets of S: κ(S) = min {|U| : U ⊂ V (S)}. The toughness of a graph S is denoted and defined by,

t(S) = min

{
|U|

ω(S−U)
: U ⊂ V(S)

}
.

The scattering number denoted as sc(S), is defined as,

sc(S) = max {ω(S−U)− |U| : U ⊂ V(S)} .

The rupture degree r(S) is defined as,

r(S) = max {ω(S−U)− |U| −m(S−U) : U ⊂ V(S)} .

The integrity I(S) is given by,

I(S) = min {|U|+m(S−U) : U ⊂ V(S)} .

The tenacity is defined as,

T(S) = min

{
(|U|+m(S−U))

ω(S−U)
: U ⊂ V(S)

}
.

The identification of vertex vulnerability parameters is recognized as NP-complete in the con-
text of general graphs. This characteristic prompts a keen interest in analyzing vertex vulnerability
parameters within particular classes of graphs, a topic that has been the subject of rigorous inves-
tigation. The identification of vulnerable parameters is fundamentally structured around three
essential categories:

(a) Cutting.

(b) Covering.

(c) Closeness.

Each category includes parameters that are arranged in a two-dimensional array, which classifies
them based on their nature as either vertex or edge parameters, and further distinguishes them
as deterministic (related to vulnerability) or probabilistic (associated with reliability) [6]. The
present study highlights the parameters of vertex vulnerability associated with cutting, specifi-
cally addressing integrity, toughness, scattering number, tenacity, and rupture degree.

In Table 1, we have compiled a few relevant research concerning vertex vulnerability across
various graph classes and interconnection networks.
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Table 1: Vertex vulnerability of various classes.

References Graphs Vertex vulnerability parame-
ters

Sundareswaran
and Swaminathan
[50]

Gear Graphs Integrity

Mamut and Vumar
[41]

Kronecker product of complete
graphs

Connectivity, integrity, tough-
ness, tenacity and scattering
number

Choudum and
Priya [15]

Cartesian product of complete
graphs and grids

Tenacity

Bagga et al. [7] Special families of graphs and com-
bination of graphs like- complete
graph, null graph, star graph, path
graph, cycle graph, Comet graph,
complete bipartite graph, and any
complete multipartite graph of or-
der p and largest partite set of order
r

Integrity

Dündar and Aytaç
[20]

Total graphs Integrity

Basavanagoud et
al. [12]

Graph operations and special
graphs like: the rooted tree and
Kragujevac tree, Mycielskian of G,
total closed neighborhood graph,
splitting graph, complement of a
wheel graph, complement of path
graph and complement of cycle
graph

Integrity

Vince [52] Cubic graphs Upper bound on Integrity
Basavanagoud and
Policepatil [11]

Wheel related graphs Integrity

Basavanagoud et
al. [10]

Total transformation graph Integrity

Atici et al. [3] Small cage graphs Integrity
Muhiuddin et al.
[45]

m−polar fuzzy graphs Integrity

Vasu et al. [51] Honeycomb networks Integrity, toughness, tenacity
and scattering number

Basavanagoud et
al. [9]

Quasi-total graph of some basic
graph families

Integrity

Mamut and Vumar
[40]

Middle graphs of some classes of
graphs

Integrity

Aytaç [5] / Li et al.
[37]

Total graphs of specific families of
graphs

Tenacity

Cozzens et al. [18] Harary graphs Tenacity
Ma et al. [39] Torus Pn × Cm Tenacity
Khoshnood et al.
[25]

Generalized Petersen graphs Tenacity

Kirlangiç [27] Gear graphs Rupture degree
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References Graphs Vertex vulnerability parame-
ters

Kavitha et al. [24] Book graph Tenacity and rupture degree
Li et al. [34] Permutation graphs of complete bi-

partite graphs
Tenacity and rupture degree

Aytac and Odabas
[4]

Composite graphs Rupture degree

Aslan and Kirlangi
ç[2]

Gear graphs Scattering number and tough-
ness

Li et al. [38] Specific classes of graphs Rupture degree
Paulraja and
Sheeba-Agnes [46]

Tensor product of complete
equipartite graphs

Toughness, scattering number,
integrity and tenacity

Li and Li [33] Harary graphs Rupture degree
Li et al. [35] Harary graphs Integrity
Kirlangiç and
Aytaç [28]

Thorn graphs Scattering number

Kirlangiç [26] Binomial tree Scattering number
Broersma et al.
[13]

Interval graph Scattering number

Chen and Zhang
[14]

Bicyclic graphs Scattering number

Kratsch et al. [29] Interval graph, circular arc-graphs,
permutation graphs, circular per-
mutation graphs, trapezoid graphs
and co-comparability graphs of
bounded dimension

Scattering number and tough-
ness

Kaval and
Kirlangiç [23]

K1,m ×K1,n,K1,m ×Pn,K1,m ×Cn

and K2 × Cn

Scattering number

Markenzon and
Waga [42]

Strictly chordal graphs Scattering number

Rajasingh et al.
[48]

Split graphs, regular caterpillars
and a class of meshes

Rupture degree

Agnes and
Geethanjaliyadav
[1]

Some classes of graphs Rupture degree

Moazzami and
Vahdat [44]

Interval graph Tenacity and rupture degree

Ye [56] Power and total graphs Integrity, toughness, rupture de-
gree

Li [36] Trees Rupture degree

In summary, we would like to reiterate the following result that will be essential for our sub-
sequent discussions.

Theorem 2.1. [58] Let S be an n-order, non-complete connected graph. Then,

2− κ(S) ≤ sc(S) ≤ n− 2κ(S).

Theorem 2.2. [7] Let S be an n-order, non-complete connected graph. Then,

δ(S) + 1 ≤ I(S) ≤ β(S) + 1.
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Theorem 2.3. [38] Let S be an n-order, non-complete connected graph. Then,

3− n ≤ r(S) ≤ n− 3.

Theorem 2.4. [16] Let S be an n-order graph. Then,

κ(S)
α(S) ≤ t(S) ≤ κ(S)

2
.

Theorem 2.5. [43] Let S be an n-order graph. Then,

κ(S+ 1)

α(S) ≤ t(S) ≤ n− κ(S+ 1)

α(S) .

Lemma 2.1. [57] Let S be an n-order graph. Then,

t(S) ≥ κ(S)
κ(S) + sc(S) .

3 Wrapped Butterfly Graph

WBF(n), n ≥ 3, the n−dimensional wrapped butterfly network, consists of n rows, or levels,
with 2n vertices or columns per row. A vertex in WBF(n) is denoted by,

{(v; i)/v = (v1, v2, ...vn), vi = 0 or 1, 1 ≤ i ≤ n} .

In WBF(n), an edge connects two vertices (v; i) and (u; j) if and only if j = i + 1( mod n) and
either (i) v = u or (ii) v varies from u in exactly the jth bit. The n−dimensional wrapped butterfly
network is a particular kind of butterfly network BF(n) in which the initial and final layers of
BF(n) are integrated into a single level. That is, vertex (v; 1) merges into vertex (v;n) for each v
[54]. The n−level wrapped butterfly graph WBF(n) has n2n vertices and 2n+1n edges and is a
constant 4−degree Cayley graph. The 3−dimensional wrapped butterfly network is depicted in
Figure 1, [17].

Figure 1: The 3−dimensional wrapped butterfly network.

Wewill utilize the subsequent lemmas, proposition, and corollary as an essential part in prov-
ing our main theorem.
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Proposition 3.1. Let n be an integer with n ≥ 3, then,

(a) α(WBF(n)) =
⌊n
2

⌋
2n.

(b) β(WBF(n)) =
⌈n
2

⌉
2n.

Proof.

(a) Case(i): When n is even.
We start selecting all the vertices positioned at Level 1, i.e., 2n number of vertices.
As no two vertices are connected in the same row, we continue selecting all the
vertices from the alternative levels upto level (n − 1); hence, the total number of
vertices selected is n

2
2n.

Case(ii): When n is odd.
We proceed by selecting all the vertices positioned at Level 1 and continue selecting
all the vertices from the alternative levels upto level (n−2). Hence, the total number
of non-adjacent vertices selected are

⌊n
2

⌋
2n.

(b) Case(i): When n is even.
Let U be a covering set. To cover all the edges of row 1 and row 2we choose |U| = 2n

from row 1. Now to cover the edges of rows 2 and 3, we can choose |U | = 2n from
row 3 Continuing, we choose vertices from alternative rows (odd level) until one
end vertex of every edge belongs to the set |U |. Hence, |U| = n

2
2n =

⌈n
2

⌉
2n.

Case(ii): When n is odd.
We proceed the same way by selecting |U| = 2n from row 1 and continuing, we
choose vertices from alternative rows (odd level). To cover the edges of row (n−1)

and row n, we choose |U| = 2n from row n and hence, |U| =
⌈n
2

⌉
2n.

Lemma 3.1. Let U be a cut set of S = WBF(n), where n is an integer with n ≥ 3.

(a) |U| = ω(S−U) = n2(n−1), and m(S−U) = 1, when n is even.

(b) Let ω(S−U) = 2 and let S1 and S2 denote the components of S−U then if either |S1| or |S2| = 1,
then |U| = 4, else |U| > 4.

Proof.

(a) We choose |U| = 2n from level n, the graph becomes disconnected, and ω(S − U) = 2.
Additionally, |S1| = |S2|. We choose 2n from alternate rows up to Level 2. This results
in an equal number of rows containing isolated vertices as the number of vertices selected
to make the graph disconnected. Hence, when |U| = n2(n−1), then ω(S − U) = n2(n−1),
see Figure 2 (for simplicity, we avoid the edges that wrap Level 1 and Level n), where the
red color vertices denote the vertex cut |U| and black color vertices denote the number of
components.
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Figure 2: ω(S − U) and |U| for 4−dimensional wrapped butterfly network.

(b) We know that κ(S) = 4. When |U| = 4, then ω(S − U) = 2, and we are finished with the
proof if either |S1| or |S2| = 1. Let’s now assume, maintaining generality, that |S1| ≥ 3 and
|S2| ≥ 2. Now, by the definition of WBF(n), we know that no two vertices have the same set
of adjacent vertices. Hence, when κ(S) = 4, then |U| > 4, which is a contradiction to our
assumption that |U| = 4.Hence, if ω(S−U) = 2 and |S1| or |S2| = 1, then |U| = 4 else |U| > 4.

Lemma 3.2. ω(S−U) = 4 when |U| = 2n, where U is a collection of vertices selected from Level 1.

Proof. Since the graphWBF(n) is symmetric and regular, by definition of the topology of the graph,
the edge connects two vertices (v; i) and (u; j) if and only if j = i + 1( mod n) and either (i) v
= u or (ii) v varies from u in exactly the jth bit. In WBF(n), when selecting |U| = 2n from Level
1, the graph S − U becomes disconnected, and the number of components becomes 4. Hence,
ω(S−U) = 4.

Corollary 3.1. When |U| = 2n, where U represents a set of vertices chosen either from Level 1 or Level n,
the order of each component in (S−U) is uniform.

Proof. InWBF(n)with |U| = 2n, if U is selected from Level 1, there are 4 components, each having

an order of 2
n

22
(n−1). On the other hand,whenU is chosen from leveln, the number of components

decreases to 2, and the order of each component is 2n

2
(n− 1). Thus, the order of each component

in (S−U) is consistent, regardless of whether it is derived from Level 1 or Level 4.

Lemma 3.3. Given a cut set U, let S = WBF(n) with n ≥ 3 and n being odd then,

ω(S−U) ≤ (n− 1)2(n−1).

Proof. Let |U| = x. If U is a covering set, i.e., |U| =
⌈n
2

⌉
2n, then it’s simple to confirm that

ω(S − U) = (n − 1)2(n−1) as α(S) + β(S) = n where n is the order of the graph S. Now, suppose
x >

⌈n
2

⌉
2n, then we have ω(S−U) ≤ n2n−x = n2n−

⌈n
2

⌉
2n = (n−1)2(n−1). When x <

⌈n
2

⌉
2n,

then as it is obvious that ω(S−U) ≤ α(S) = (n− 1)2(n−1).

Lemma 3.4. ω(S − U) = (n − 1)2(n−1), when |U| = n2(n−1) or (n + 1)2(n−1) where U is a cut set for
n ≥ 3 and n is odd.
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Proof. When |U| = β(S), it is evident that ω(S − U) ≤ α(S) and m(S − U) ≥ 1. Specifically, when
|U| = (n + 1)2(n−1), it results in ω(S − U) = (n − 1)2(n−1) by Lemma 3.3. S consists of n rows,
each containing vertices representing columns. The columns are partitioned into two halves: the

first set of vertices
(
n2n

2

)
represents one half, while the next set of vertices

(
n2n

2

)
represents the

other half. Now, without loss of generality, we choose |U| = 2n

2
from the nth row of the first half

and proceed by selecting 2n

2
number of vertices from alternative rows. Therefore, the total number

of vertices selected from the first half is (n+ 1)

2
2(n−1). It is evident that when |U| = (n+ 1)

2
2(n−1),

ω(S−U) =
(n− 1)

2
2(n−1).

Similarly, we choose |U| = 2n

2
from the second row of the second half and proceed by selecting

2n

2
number of vertices from alternative rows; thus, the total number of vertices chosen from the

second half is (n− 1)

2
2(n−1).

It is easy to see that when |U| = (n− 1)

2
2(n−1), ω(S − U) =

(n− 1)

2
2(n−1). The second set of

vertices in row 1 and the second set of vertices in row n are connected by an edge, resulting in
m(S−U) = 2. Hence, the total number of vertices selected from both the first and second halves

is (n+ 1)

2
2(n−1) +

(n− 1)

2
2(n−1) = n2(n−1) vertices and

ω(S−U) =
(n− 1)

2
2(n−1) +

(n− 1)

2
2(n−1) = (n− 1)2(n−1),

see Figure 3(a) (for simplicity, we avoid the edges that wrap Level 1 and Level n).

Figure 3: 3-dimensional wrapped butterfly network:
(a) ω(S − U) = 8 and |U| = 12.
(b) ω(S − U) = 8 and |U| = 16.

Similarly, when |U| = (n + 1)2(n−1), then its easy to verify that ω(S − U) = (n − 1)2(n−1), see
Figure 3(b).

4 Vertex Vulnerability Parameters for Wrapped Butterfly Graphs

The key outcome of our paper is presented as follows:
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Theorem 4.1. I(WBF(n)) = 2(n−2)[3 + n], n ≥ 3.

Proof. Our main aim is to choose |U| very small in such a way that m(S − U) is also small. We
know that κ(WBF(n)) = 4; then, by Lemma 3.1(b), for |U| = 4, it follows that ω(S − U) = 2 and
m(S − U) = n2n − 5. Hence, we choose |U| > 4. Now, by Corollary 3.1, when |U|=2n (choosing

from the first level alone), m(S−U) =
2n

22
(n− 1).

Therefore, |U|+m(S−U) = 2n +
2n

22
(n− 1) = 2n−2[n+ 3]. By definition,

I(S) = min(|U|+m(S−U)) ≤ 2n−2[n+ 3].

When |U| = 2n, it is observed that ω(S−U) = 4 by Lemma 3.2. As m(S−U) ≥ n− |U|
ω(S−U)

, we get

m(S−U) ≥ 2n−2[n− 1]. Therefore,

I(S) = min(|U|+m(S−U)) ≥ 2n + 2n−2[n− 1] = 2n−2[n+ 3],

consequently, we deduce that I(WBF(n)) = 2(n−2)[3 + n].

Theorem 4.2. Let S = WBF(n), n > 2. Then,

(1) t(S) =

1, n is even,
n

(n− 1)
, n is odd.

(2) sc(S) =
{
−2, n is odd,
0, n is even.

(3) T(S) =


1 + n2(n−1)

n2(n−1)
, n is even,

n2(n−1) + 2

(n− 1)2(n−1)
, n is odd.

(4) r(S) =
{
−2(n−1) − 2, n is odd,
−1, n is even.

Proof.

(1) When n is even.
Let T1 be a cut set. When |T1| = n2(n−1), then by Lemma 3.1(a), ω(S − T1) = n2(n−1), thus
|T1|

ω(S− T1)
= 1, which implies that t(S) ≤ 1. In aWBG(S), the set |U| = n2(n−1) is the unique

cut set such that ω(S−U) = |U|, as when n is even α(S) = β(S), and for any other cut set, it

is guaranteed that ω(S−U) ≤ |U|. Thus, the minimum value of |U|
ω(S−U)

is achieved when

ω(S−U) = |U|, hence,

t(S) ≥ min

(
|U|

ω(S−U)

)
=

⌈n
2

⌉
2n/

⌊n
2

⌋
2n = 1,
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hence the result.

When n is odd.
Let T1 be a cut set such that when |T1| = n2(n−1), ω(S− T1) = (n− 1)2(n−1), by Lemma 3.4,

hence |T1|
ω(S− T1)

=
n2(n−1)

(n− 1)2(n−1)
, we have t(S) ≤ n2(n−1)

(n− 1)2(n−1)
.

According to Lemma 3.4, ω(S−U) ≤ (n−1)2(n−1) holds true for n2(n−1) ≤ U ≤ (n+1)2(n−1).

The minimum value of |U|
ω(S−U)

is achieved when |U| = n2(n−1) and

ω(S−U) = (n− 1)2(n−1). Therefore, it follows that,

t(S) ≥ n2(n−1)

(n− 1)2(n−1)
=

n

(n− 1)
.

(2) When n is even.
Let |T1| be a cut set such that |T1| =

n

2
2n. In this case, when |T1| =

n

2
2n, it implies

ω(S− T1) =
n

2
2n, leading to sc(S) ≤ 0. Conversely, by Lemma 2.1, we know that

κ(S)
κ(S)+ sc(S)

≤ 1 as t(S) = 1. Thus, it follows that sc(S) ≥ 0. Consequently, sc(S) = 0.

When n is odd.
If ω(S−U) = 2, then we know that by Lemma 3.1(b) |U| = 4. Hence,

min(ω(S−U))− |U| ≤ 2− 4 = −2.

Now, by Theorem 2.1(i), 2− κ(S) ≤ sc(S) = 2− 4 ≤ sc(S) = sc(S) ≥ −2.Hence, sc(S) = −2.

(3) When n is even.
Let U be a cut set of S with |U| = x. The remaining graph S−U has at most x components,

and therefore, m(S − U) ≥ n2n − x

x
. Since m(S − U) ≥ n2n − x

x
≥ 1, x must be at most

n2(n−1). Consequently, we obtain T (S) ≥ min

 n2n − x

x
+ x

x

, where x ≤ n2(n−1).

Now, let’s analyze the function f(x) =

n2n − x

x
+ x

x
. It’s evident that f ′(x) =

x− n2n+1

x3
.

Since x ≤ n2(n−1), we have f ′(x) < 0, implying that f(x) is a decreasing function. Therefore,

the minimum value of f(x) occurs at x = n2(n−1), and fmin(x) =
1 + n2(n−1)

n2(n−1)
. Hence,

T (S) ≥ 1 + n2(n−1)

n2(n−1)
.

Alternatively, considering U’ as the covering set of S, where |U′| = n2(n−1), m(S − U′) = 1,
and ω(S−U′) = n2(n−1), we can utilize the definition of tenacity to derive,

T(S) ≤ |S’|+m(S−U′)

ω(S−U′)
=

1 + n2(n−1)

n2(n−1)
.
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Consequently, we conclude that, T(S) = 1 + n2(n−1)

n2(n−1)
.

When n is odd.
Referring to Lemma 3.3 and Lemma 3.4, when |U| ≥ n2(n−1), it follows that,

ω(S−U) ≤ (n− 1)2(n−1), and m(S−U) ≥ 1.

The minimum value for tenacity occurs when m(S−U) = 2. Therefore, we have

T(S) ≥ |U|+m(S−U)

ω(S−U)
=

n2(n−1) + 2

(n− 1)2(n−1)
.

Alternatively, let U’ denote the covering set of S, where |U’| = n2(n−1), m(S − U′) = 2, and
ω(S−U′) = (n− 1)2(n−1).

By the definition of tenacity, we can deduce that, T(S) ≤ |S’|+m(S−U′)

ω(S−U′)
=

2 + n2(n−1)

(n− 1)2(n−1)
.

Therefore, it follows that, T (S) = 2 + n2(n−1)

(n− 1)2(n−1)
.

(4) When n is even.
It is easy to see that by Lemma 3.1(a) there is a vertex cut T1 such that when |T1| =

(n
2

)
2n,

then ω(S− T1) =
(n
2

)
2n andm(S− T1) = 1 from the definition of rupture degree, we have

r(S) ≥ ω(S− T1)− |T1| −m(S− T1) = −1.

Let X be an arbitrary vertex cut of G, and set |X| = x. If x ≤
(n
2

)
2n, then ω(S − X) ≤ x.

Therefore, we have m(S− X) ≥
⌈(

n2n − x

x

)⌉
. Hence,

ω(S− X)− |X| −m(S− X) ≤ −
⌈(

n2n − x

x

)⌉
≤ −1.

If x >
(n
2

)
2n, then ω(S− X) ≤ n2n − x. Hence,

ω(S− X)− |X| −m(S− X) ≤ n2n − 2x− 1 ≤ −1.

From the choice of X and the definition of rupture degree, we obtain r(S) ≤ −1.

When n is odd.
Let U be an arbitrary cut set of the graph S and set |U| = x. If n2(n−1) ≤ x ≤ (n+ 1)2(n−1),
then by Lemma 3.4, ω(S−U) = (n− 1)2(n−1). When n2(n−1) ≤ x < (n+ 1)2(n−1), we have
m(S−U) = 2 and when x = (n+ 1)2(n−1), then m(S−U) = 1. Hence,

ω(S−U)− |U| −m(S−U) = (n− 1)2(n−1) − x−m(S−U).

It is easy to verify that the maximum value of (n−1)2(n−1)−x−m(S−U) is obtained when
x = n2(n−1) andm(S−U) = 2, and hence,

r(S) = max{ω(S−U)− |U| −m(S−U)}
= (n− 1)2(n−1) − n2(n−1) − 2

= −2(n−1) − 2.
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When x > (n+ 1)2(n−1), we have ω(S−U) ≤ n2n − x, andm(S−U) ≥ 1. Now,

ω(S−U)− |U| −m(S−U) ≤ n2n − 2x− 1 = n2n − 2(n+ 1)2(n−1) − 1

= n2n − (n+ 1)2n − 1

= −2n − 1

= −2(n−1)2− 2 + 1

< −2(n−1) − 2,

Hence, r(S) ≤ −2(n−1) − 2.

When x < n2(n−1), then ω(S−U) ≤ (n− 1)2(n−1) = x− 2(n−1) andm(S− X) ≥ 2. Hence,

ω(S−U)− |U| −m(S−U) ≤ −2(n−1) − 2, implies r(S) ≤ −2(n−1) − 2.

It is easy to see that by Lemma 3.4, there is a vertex cut T1 such that when |T1| = n2(n−1)

then ω(S− T1) = (n− 1)2(n−1) and m(S− T1) = 2. We obtain

r(S) ≥ ω(S− T1)− |T1| −m(S− T1) = −2(n−1) − 2,

from the rupture degree definition. Hence, the proof.

Algorithm 1: Integrity Assignment
Input: A wrapped butterfly graph WBF(n)
Output: Integrity of WBF(n)

1 /* Finding the optimal cut set */
2 Initialize U← ∅;
3 for i← 1 to n do
4 if i = 1 then
5 U← {v, i};
6 |U| ← len(U);

7 /* order of the largest connected component after removing U from S */
S_removed_U← S.copy();

8 S_removed_U.remove_nodes_from(U);
9 largest_cc← max(nx.connected_components(S_removed_U),key=len);

10 m_S_minus_U← len(largest_cc);

Initially, Algorithm 1 begins by initializing an empty set U , which takes O(1) time. It then
iterates from i = 1 to i = n, where only on the first iteration, vertices from Level 1 are chosen to
the set U . Although this loop theoretically runs O(n) times, the actual operations within the if
condition only execute once, making this part effectively O(1).

Following this, the algorithm creates a copy of the graph S, which takes O(V + E) time for
a graph with V vertices and E edges, and removes the nodes in U from the copied graph. The
removal of nodes has a complexity ofO(|U|+d(U)), where d(U) represents the sum of the degrees
of nodes in U.
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Next, the algorithm finds the largest connected component after the removal, which involves
identifying connected components in the graph. This operation is O(V+E), as it requires travers-
ing the graph. Thus, the overall complexity of the algorithm combines these steps into,

O(V+ E+ |U|+ d(U) + n).

However, since n, |U|, and d(U) are typically small relative to V and E in large graphs, the algo-
rithm’s complexity is effectively O(V + E). This makes it efficient for analyzing the integrity of
large graphs by examining connected components after specific node removals.

Algorithm 2: Toughness, Tenacity and Rupture degree Assignment
Input: A wrapped butterfly graph S = WBF(n)
Output: Toughness, Tenacity and Rupture degree of S

1 if n%2 == 0 then
2 U← {vertex | vertex in levels_i and level_i%2 == 1};
3 else
4 for each level_i in WBF(n) do
5 total_vertices_in_each_level_i← 2n;
6 first_half← first (2n)/2 vertices from level_i;
7 second_half← remaining (2n)/2 vertices from level_i;
8 From first_half, choose all the alternative vertices from level_n to level_1;
9 From second_half, choose all the alternative vertices from level_(n-1) to level_2;

10 U← selected vertices from the previous steps;

11 /* order of the largest connected component after removing U from S */
S_removed_U← S.copy();

12 S_removed_U.remove_nodes_from(U);
13 largest_cc← max(nx.connected_components(S_removed_U),key=len);
14 m_S_minus_U← len(largest_cc);
15 /* number of components in the graph after removing U from S */

w_S_minus_U← len(list(nx.connected_components(S_removed_U)));

In order to compute the scattering number associated with WBF(n), the selection of the set
U is straightforward and based on Theorem 2.1. For odd values of n, the appropriate choice is
U = κ(WBF(n)). In contrast, for even values of n, the selection process for U is the same as that
used for other parameters when n is even. Therefore, we present Algorithm 2, which facilitates
the calculation of toughness, tenacity, and rupture degree. The complexity analysis can be broken
down as follows:

First, depending on whether n is even or odd, the algorithm selects a subset of vertices U. If n
is even, the subset U is chosen from vertices in odd-numbered levels, requiring O(V) time, where
V represents the number of vertices in the graph. When n is odd, the algorithm iterates through
each level i in the graph and divides the vertices of each level into two halves, fromwhich it selects
alternating vertices. Given that each level has 2n vertices, and this process must be repeated for
each of the n levels, the time complexity for this selection process is O(n · 2n).

After defining U, the algorithm creates a copy of the graph S, which takes O(V + E), where
E is the number of edges. The selected vertices in U are then removed from the copied graph,
an operation that has complexity O(|U| + d(U)), where d(U) represents the sum of degrees of
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nodes in U. Next, the algorithm calculates the largest connected component in the modified graph
S_removed_U by identifying connected components and selecting the one with the largest size.
Finding connected components has a complexity of O(V + E), as it involves traversing the graph.

Finally, the algorithm determines the number of components in the graph after the removal
of U by calling a connected components function again, which has a complexity of O(V + E).
Summing these parts, the total complexity is approximately,

O(n · 2n + V+ E+ |U|+ d(U)).

Since n · 2n, |U|, and d(U) are typically smaller than V + E in large graphs, the overall complexity
can be simplified to

O(V + E).

This makes the algorithm efficient for calculating toughness, tenacity, and rupture degree in large
wrapped butterfly graphs.

4.1 Simulation experiment

While themajority of articles rely on theoretical frameworks for their results, ourwork includes
an algorithm and a simulation experiment to enhance comprehension of the efficiency of WBF(n)
within a network context. Hence in this section, we delve into the planning, implementation, and
results of the simulation experiment to assess the performance of Algorithms 1 and 2. Initially, we
identify all potential combinations of cut sets U within a wrapped butterfly graph, subsequently
determining ω(S−U) andm(S−U). The outcomes are then evaluated for various properties, in-
cluding integrity, toughness, scattering number, tenacity, and rupture degree pertaining to graph
S. In the case where n is even, the topology of the wrapped butterfly graph yields a cut set whose
cardinality corresponds to the number of components. This configuration leads to the attainment
of the optimal solution. Conversely, when n is odd, various combinations are evaluated to deter-
mine the optimal solution.

In the following Table 2, the feasible solutions have been calculated for values of n equal to 3,
4 and 5, fromwhich the optimal solution has been identified.The application of Theorems 2.1, 2.2,
2.3, 2.4, and 2.5 allows us to exclude all solutions that do not conform to the established bounds.
The selection process involved choosing theminimumvalues for integrity, toughness, and tenacity,
while the maximum values were selected for rupture degree and scattering number, consistent
with their definitions. The findings in Table 2 indicates that the optimal solution aligns with the
results generated by Algorithms 1 and 2, thereby demonstrating the algorithms’ effectiveness.
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Table 2: Comparison of various values of vertex vulnerability parameters generated by Algorithms 1 and 2 with all feasible solutions.

n Vertex vulnerability parameters Values
All feasible solutions Optimal solution

3

Integrity 12, 13, 14, 15, 16 12
Toughness 1.5, 1.6, 1.7, 1.8, 1.9, . . . , 2 1.5
Tenacity 1.8, 1.9, . . . , 2.1 1.8

Rupture Degree −6,−7,−8,−9, . . . ,−21 −6
Scattering Number −2 −2

4

Integrity 28, 29, 30, 31, 32, 33 28
Toughness 1, 1.6, 1.7, 1.8, . . . , 2 1
Tenacity 1.03 1.03

Rupture Degree −1,−3,−4,−5, . . . ,−61 −1
Scattering Number −2, 0 0

5

Integrity 64, 65, 66, 67, 68, . . . , 97 64
Toughness 1.25, 1.3, 1.4, 1.5, . . . , 2 1.25
Tenacity 1.28, 1.3, . . . , 1.5 1.28

Rupture Degree −34,−35,−36,−37, . . . ,−157 −34
Scattering Number −2 −2

5 Analysis of The Results

The physical insight into the results presented in this study related to the wrapped butterfly
graph WBF(n) reveals key characteristics related to its vulnerability and connectivity. Hence in
this section, we give a complete analysis of the results obtained.

The integrity of the graph, represented by I(WBF(n)) = 2(n−2)[3 + n], demonstrates that the
graph’s robustness increases exponentially with n, indicating that larger graphs are more robust
against node failures.

The toughness of the graph, which varies depending on whether n is even or odd, shows that
for even values ofn, the graph exhibits a toughness value of 1, which implies that it requires remov-

ing a substantial portion of the graph to disconnect it. However, the minimal ratio |U|
ω(S - U)

= 1

means that this is the most efficient way to disconnect the graph and reflects that the graph is
resilient to fragmentation, but once the right cut set U is found, it will disconnect in an optimal
manner. For odd values of n, the toughness is given by n

n− 1
, which is slightly greater than 1, sig-

naling that it is still quite resistant to disconnection and may require slightly more effort to break
connectivity. The scattering number, which reflects the extent of fragmentation when vertices are
removed, is negative for odd n i.e., −2, and zero for even n, highlighting a stronger resistance to
fragmentation in odd configurations.

The tenacity of the graph, whichmeasures the minimum number of nodes whose removal dis-
connects the graph, shows distinct patterns based on n’s parity. For even n, the tenacity formula
1 + n2(n−1)

n2(n−1)
reflects a higher degree of robustness to disconnection, while for odd n, n2(n−1) + 2

(n− 1)2(n−1)

implies that a slightly greater number of nodes must be removed to achieve disconnection, thus
reflecting a considerably higher level of robustness in comparison to even n.
Finally, the rupture degree, which quantifies the impact of removing nodes on the graph’s con-
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nectivity, shows more negative values for odd n (i.e., −2(n−1) − 2) and a less negative value for
even n (i.e., −1), indicating that the graph is more vulnerable to disconnection when n is even.

Overall, these results convey that wrapped butterfly graphs are highly robust and stable struc-
tures, making them ideal for designing robust interconnected systems. Their high integrity, tough-
ness, and tenacity, coupled with low scattering numbers and rupture degrees, ensure these net-
works canwithstand significant disruptions while maintaining functionality. A similar methodol-
ogy based on the topology of the network, can be utilized to identify vulnerabilities across differ-
ent interconnection networks, including power grids, transportation systems, and communication
networks, to gain insights into their vulnerabilities and performance in real-world scenarios.

6 Conclusion

The wrapped butterfly graphs high symmetry and unique structural properties make it an in-
triguing subject for studying network vulnerability. By identifying key vulnerability parameters,
we have laid the groundwork for understanding its robustness. In the future, we would like to
extend this analysis to other symmetric networks, to evaluate their vulnerability under various
conditions. This exploration will not only enhance our theoretical understanding but also have
practical implications for designing robust and reliable interconnection networks for diverse ap-
plications.
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